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We present an analytical solution for the problem of convective heat transfer and the results of calculations 

of heat transfer in channels with discrete heat release in laminar and slug flows. 

The problem of the study of convective heat transfer in channels with discrete heat supply to the walls 

arises in creating systems for achieving the normal thermal regime of radioelectronic equipment and, in particular, 

modern antenna systems. 

In investigations carried out to date, heat transfer from microcircuits in channels formed by printed circuit 

boards with the microcircuits was usually determined [1, 2]. Analytical, mainly numerical, and experimental 

investigations on heat transfer in plane channels with discrete sources on the walls are presented in [3-5  ]. 

In [3 ] results of a numerical investigation of heat transfer in channels with discrete heat release in the 

walls are given in a conjugate formulation on the initial hydrodynamic and thermal section; however, no 

computational relations are presented. 

In [4 ] results of a numerical solution of a conjugate problem with a developed velocity profile are compared 

with results of experimental investigations of four rows of heat generating modules located on one of the channel 

walls. Experimental data that exceed somewhat the predicted results on heat transfer in the region of laminar flow 

as well as good coincidence of the results of calculation with the experiment for turbulent flow are noted. 

Investigations of heat transfer from discrete modules of constant temperature in a turbulent flow are presented in 

[5 ]. In that work a numerical solution of the corresponding problem in a nonconjugate formulation is also presented. 

In the above-listed works a number of characteristic trends are noted that are typical of the case of heat 

transfer considered. Thus, sometimes with discrete heat supply the heat transfer coefficients in its sections may 

exceed the heat transfer coefficients at that place in the channel for the case of constant heat supply by more than 

a factor of two. Despite the above, as noted in [5 ], where separation of the heat supply sections by heat-insulating 

gaps is considered from the standpoint of heat transfer enhancement, the total amount of heat removed from a 

channel of fixed length does not increase. 

However, up to the present time the problem of heat transfer in channels with discrete heat supply in a 

conjugate formulation has not been solved analytically. Heat transfer from heat generation sources at a considerable 

distance from the inlet to the channel has not received sufficient study although knowledge of it is necessary for 

determining the parameters of the systems for cooling antenna arrays with a large number of parallel long channels 

as well as the effect of the thermal conductivity and thickness of the wall on heat transfer. 

In the present work we present accurate analytical solutions of the problems of convective heat transfer 
with account for the axial thermal conductivity of the walls for laminar and slug flows of the heat carrier and discrete 

change in the heal flux density on the walls and we investigate the main laws governing convective heat transfer 

that characterize this case. We pose the problem as follows (see Fig. 1). 

We write down the energy equation for the liquid flow and the wall: 
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Fig. 1. A plane channel with discrete heat generation sources on the walls (a) 

and the change in the heat flux density on the walls as a function of x (b). 
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where U - U0 for the slug velocity profile; U(y) = Urn(1 - (y/R) z) for the laminar velocity profile, Um= 3/2U. 

The boundary and conjugation conditions have the form 

t2lx= O= tO, t21y= R =  t l ( x ) ,  

Ot 2 Ot 2 
oT y=o = o, ~ y = R  = F (~). (3) 

In writing down Eq. (2), in formulating the problem, we made the following assumptions: 

the temperature difference over the wall thickness is not taken into account (it is assumed to be small); 

the outer surfaces of the channel walls are assumed to be adiabatic. 

First, we present a solution for a developed laminar liquid flow. 

We consider symmetric discrete heat supply with equal powers of each of the sources and width of a source 

l equal to the spacing between the sources (see Fig. 1). As is known, in the formulation considered, Eq. (2) of the 

system may be treated as a complex boundary condition for t2(x, y). The essence of the proposed method for solving 

the problem formulated is as follows. The discrete, periodically varying (with the period 2/) heat flux density q(x) 
on the walls is represented as a Fourier series on the segment 2nl < x < (2n + 2)/, n -- 0, 1, 2, ...: 

k= l  

(4) 

Passing to the variables x and ~ -- y/R and denoting O = t - to, we seek the solution of Eq. (i) in the form of the 

sum 0 = Oen + 0 . ,  where O. is the solution that determines the temperature field at a distance from the inlet to the 
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channel (x --, ~)  and Oen is the solution determining the temperature field in the entry section. The equation and 

boundary conditions for O. in the variables x, ~ have the form 

_ _  00. 020, UmR2 (1 - ~2) 

a Ox O~ 2 
m = O ~  

(5) 

oo. dZo. ;l 2 oo. q (x) 

~ = 0  dx 2 21c]R O~ ]~=1 ~l 6 
(6) 

Because of the periodicity of the heat supply law, we suggest seeking the solution O.(x, ~) in the form of 

the sum of a term linearly increasing with increase in x and a certain periodic function with the period of variation 

over x equal to the period of variation of the heat flux density. In this case the periodic function is represented as 

a Fourier series on a segment of length 2l, equal to the period of variation of q(x), with coefficients that are certain 
functions of ~, i.e., 

ao(~) ,9. (x ,  ~) = Ax + - - +  �9 k ~  
ak (~) c o s - ~  X + bk (~) s ln--~ x" (7) 

k = l  

Substituting O, into Eq. (5) to determine the functions ak(~) and bk(~), we obtain a system of ordinary differential 

equations of second order: 

i t  

b k (~) + D (1 - ~2) ak (~) = 0 ,  

where 

and an equation for ao(~): 

n 

a k (~) - D (1 - ~2) bk (~) = 0 ,  

kzr, R2Um 
D - -  - -  

la ' 

(8) 

a it 

2 R  2 a 0 (~) = AUm (1 - ~ 2 ) .  (9)  

The solution of system (8) is determined in the form of the power series 

ak (~) = ~ er~ ~n, bk (~) = ~ gnk ~n . (10) 
n=O rt=O 

Substituting these series into system (8), we can easily obtain recurrence relations to determine the coefficients 

Delk + 6gak = 0 ,  

Dglk - 6eak = 0 ,  (11) 

enk and gnk. These relations have the form 

Deok + 292k = 0 ,  

Dgok -- 2e2k = 0 ,  

Satisfying boundary conditions (6), we obtain that the coefficients enk and gnk are equal to zero for odd 
values of n, and we obtain following system of equations (for each k) to determine eok and gok: 

D ( e n k -  en_2k ) + g n + 2 k ( n +  2 ) ( n +  1) = 0 ,  n >  2 ,  

D (gnk - gn-2k) - en+2k (n + 2) (n + 1) = 0 ,  n _> 2 ,  
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k = l ,  2 ,  3 ,  ... 

r t=2  

gOk T + ~ -7- 
n = 2  

n --- 2, 4, 6 .... in the sums. 

+ ~ - ~ n  enk = O ,  

+iTg~ n 
q 

gr~ = 2i5k ~ [1 - ( -  1)k], 
(12) 

The algebraic system considered can be solved at each k by representing the coefficients eng and gnk in 

terms of e0~ and got in the following way: 

gnk = Cnk gOk + Dnk eOk , n >_ 2,  enk = Bnk gOk + Fnk eok �9 

In this case the coefficients Cnk, Dnk, Bnk, and Fnk introduced are determined from recurrence relations of type 

(11), while Czk = F2k = O, D2k = - D / 2 ,  B2k = D / 2  have already been determined. For k -- 2, 4, 6, ... in the case 

considered the solution of (12) is trivial, e0k and gOk = 0. The coefficient ao(~) in Eq. (7) and the constant A are 
determined by direct integration of Eq. (9). Substituting the expressions obtained into formula (7), for the 

temperature field at a distance from the inlet to the channel we finally obtain 

O. (x ,  ~) - 3 aq 3 qR ~2 1 qR e4 o~ k~ k~ (13) 
4 UmR2 2 x + g ~ - 1---6 ~ ~ + ~ ak (~) cos --~- x + b/~ (~) sin --/- x .  

k - 1  

We now find the solution Pen(X, ~). The equations and boundary conditions for determining 0en are similar to Eqs. 

(5) and (6), but the second boundary condition in Eqs. (6) is homogeneous. The solution i ssought  by the method 

of separation of variables. Substituting 0en(X, ~) in the form of the sum of products Oen = ~. Xi(x)Yi(~) , for Xi(x) 

we immediately obtain X i - exp ( - ( 7 i / s ) . x ) ,  where s = UmR2/a; 7i are the eigenvalues. T~o determine Yi(~), we 

have the following boundary-value problem: 

~:' + ~, (1 - ~2) y = o ,  (14) 

,l 2 s Y' I~=1 = 0 ,  
Y' I~=0 = 0 ; Y[~=I 218R 

The quantity Yi(~) is sought in the form of a series, just as for the solution of a nonconjugate problem [6 ]: 

(15) 

Yi= ~ AnOn" (16) 
n = 0  

Substituting this expression into Eq. (14), we obtain a recurrence relation for An: 

An-2 - An Yi (17) 
A n + 2 = ? i ( n +  1 ) ( n + 2 ) '  A 0 =  1; A 2 = - ~ - .  

From the first boundary condition of Eqs. (15) it follows that all the coefficients A n for odd values of n are equal 

to zero (i.e., n = 0, 2, 4 . . . .  ). The second boundary condition of Eqs. (15) yields an equation for determining the 

eigenvalues 7i: 

ao+ 
n = 2  

A n 1 - - -  21r R 7/ n = 0.  
(18) 
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To find the eigenvalues at large values of Yi, we shall avail ourselves of the method suggested by Cess [7 ], who 

used the asymptotic solution of Eq. (14). Satisfying the second boundary condition of Eqs. (15) in the asymptotic 

solution and performing the necessary transformations, we write the final equation for determining the eigenvalues 

(fl2i = 7i) of the formulated problem at large values of 7i ~i):  

20 j,2 s2 ~.2 s2 ( ( 3 / 3 1 2 5 ) )  
t3 6 = 0.45922 2 - ~  + 0.79539 2 - - ~  ctan ~ . (19) 

The eigenvalues 7i (/3i) calculated by Eqs. (18) and (19) are presented in Tables 1 and 2. As seen from a 

comparison of the eigenvalues from these tables, Eq. (19) can be used for determining fli (7i) when i >_. 7. However, 
already at i >__ 5 the dependence of the eigenvalues on the combination 2t2s2/}tlC3R vanishes, and therefore when 

i >_ 7 these values can be determined from the approximate formula (which follows from Eq. (19)) 

fli = 4i - 7 / 3 .  (19a) 

When i < 7, the values of fli should be determined directly by numerical solution of Eq. (18) (see Table 1). 

Thus, the solution for the entry section can be written in the form 

i=1 S 

The coefficients B i are determined from the initial condition at x = 0: 0st I x--0 = - 9 ,  I x=O . In this case, since the 
second boundary condition of Eqs. (15) (similar to the usual boundary condition of the third kind) involves the 

eigenvalue 7i, the eigenfunctions Yi(~) are not orthogonal, and the determination of B i is made in a somewhat more 
complex way. We write out the final formulas for determining Bi: 

B i = 

1 
f G (~) Yi (8) (1 - ~2) d8 + SY  i (1) (7i G (1) + W) 
o (21) 

1 

f 
o 

(8) (1 - ~2) d~ -F 2S7 i~  i (1) 

The integral in the denominator is: 

I 1 = f ~ / (~)  (1 - t 2) d~ = A]An 2 
o ]=On=O ( j +  n +  1 ) ( ] + n + 3 ) '  

and the integral in the numerator is 

1 qR An 16 (n + 5) 12 = f G (~) Yi (8) (1 - ~ )  d8 = -~2 n=0 
0 

3 
8 (n + 3) 

, )  
16 ( r /+  7) + 

+ - 2  

k= 1 j=0 n=0 

The constants S, W, and G(1) are 

G (1) - x~ Yn (i) 12 + SYn (1) Yn G (1) 

21c3R n=2 I 1 + 2SYny2n (1) 
S -  W =  

)12 s ' ~ SY~n (1) 

n=2 I 1 + 2SYn~nn (1) 
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TABLE 1. Eigenvalues of the Problem (the first six or seven values) 

1L-t= 1/L=. 

1 
2 
3 
4 
5 
6 
7 

1 
2 
3 
4 
5 
6 
7 

1 
2 
3 
4 
5 
6 
7 

1 
2 
3 
4 
5 
6 
7 

1 
2 
3 
4 
5 
6 
7 

viC~) 

----17,40 

2,5752 6,6318 
5,7237 32,761 
9,6775 93,653 

13,671 186,88 
17,669 312,18 
21,674 460,76 
25,371 643,69 

L-a~--78 13 
3,2777 10,743 
5,9018 34,831 
9,7095 94,274 

13,681 187,16 
17,673 312,33 
21,668 469,51 
25,348 642,50 

L-L=174,0 
3,6493 13,317 
6,1485 371806 
9,7604 95,265 

13,697 187,60 
17,680 312,57 
21,678 469,94 
25,357 642,96 

L-a=6959 
4,2643 18,185 
8,0994 65,601 

11,566 133,78 
14,758 217,79 
18,190 330,87 
21,932 '481,00 
25,613 655,99 

-L-1=7813 
.4,2669 18,206 
8,1213 65,956 

11,639 13,547 
14,856 220,71 
18,253 333,19 
21,960 482,24 
25,688 659,87 

L-a=t3918 

4,2758 I 18,282 8,2009 67,255 
11,923 142,15 

15,350 235,61 
18,668 348,50 
22,200 492,84 
25,612 655,97 

1 
2 
3 

1 
2 '  
3 
4 
5 
6 
7 

L-i=390,6 

3,9394 15,519 
6,5714 43,183 
9,8753 97,523 

13,733 188,60 
17,695 313,12 
21,683 470,14 
95,258 637,97 

L-a=1392 
4,1766 ~7,444 
7,4394 55,345 

10,365 107,44 
13,906 193,38 
t7,768 315,69 
21,715 471,56 
25,348 642,50 

L-1=19 53' 
4,2074 17,702 
7,6413. 58,390 

I0,592 I12,19 
14,004 196,10 
17,809 317,17 
21,739 , 472,57 
25,372 643,75 

L-x=I5625 
4,2769 18,292 
8,2121 67,439 

11,965 143,15 
15,440 238,39 
18,768 352,22 
22,260 495,50 
25,856 669,25 

L-x=17397 

4,2781 I8,302 
8,2214 67,591 

11,999 143,99 
I5,519 240,85 
18,864 355,85 
22,305 497,50 
25,593 654,99 

L-1=-31250 
4,2822 18,337 
8,2579 68,192 

12,138 I47,34 
15,862 251,59 
19,383 375,70 
22,776 518,73 
25,476 648,99 

I l hi 

L-X=3125 

4,2368 
7,8648 

10,958 
14,204 
17,898 
21,782 
25,448 

17,950 
61,855 

120,08 
201,74 
320,32 
474,44 
647,59 

I 
2 
3 

6 
7 

L-1=_3479 
412418 17,993 
7,9061 62,507 

11,045 121,99 
14,262 203,40 
17,925 321,29 
21,794 474,98 
25,357 642,99 

L-1=3906 
4,2467 18,034 
7,9470 63,155 

t1,139 124,08 
14,331 205,37 
17,957 322,46 
21,810 475,67 
25,685 659,7I 

L-1__.--39062 
4,2831 18,345 
8,2671 68,345 

'12,173 148,18 
15,953 254,50 
19,554 382,34 
23,021 529,97 

1 
2 

5 
6 

"7  

L-x=195313 
4,2865 18,374 
8,2965 68,831 

12,284 150,88 
16,245 263,89 
20,167 406,71 
23,707 561,99 

Remark. When i _> 7, the eigenvalues can be calculated from the approximating relation (19a) or by solving 
Eq. (19) for large values of/3. Eigenvalues found from the approximate equation are presented in Table 2. 
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TABLE 2. Eigenvalues fli (Yi = f12) Determined by Solving Eq. (19) 

L - 1  i 

1 2 3 4 5 6 7 8 9 

0.303 

30.25 

151.2 

1.9.102 

3.0.102 

7.6.102 

1.5.103 

3.0.103 

2.4-104 

3.0.104 

7,6.104 

3.5.105 

3.5.106 

3.5.107 

1.6750 

1.9660 

2.2638 

2.3195 

2.4240 

2.6623 

2.8615 

3.0734 

3.6662 

3.6662 

3.6628 

3.6662 

3.662 

3.662 

5.6672 

5.6672 

5.6672 

5.66681 

5.6681 

5.6711 

5.6750 

5.6828 

5.7843 

9.6672 

9.6672 

9.6672 

9.6672 

9.6672 

9.6672 

9.6672 

9.6672 

9.6701 

13.667 

13.667 

13.667 

13.667 

13,.667 

13.667 

13.667 

13.667 

13.667 

17.667 

17.667 

17.667 

17.667 

17.667 

17.667 

17.667 

17.667 

17.667 

21.667 

21.667 

21.667 

21.667 

21.667 

21.667 

21.667 

21.667 

21.667 

25.667 

25.667 

25.667 

25.667 

25.667 

25.667 

25.667 

25.667 

25.667 

5.8107 

5.9831 

5.5343 

7.6662 

7.6662 

9.6701 

9.6784 

9.7111 

10.060 

11.328 

13.667 

13.671 

13.671 

13.706 

14.045 

17.667 

17.671 

17.667 

17.673 

17.734 

21.667 

21.671 

21.667 

21.668 

21.683 

25.667 

25.671 

25.667 

25.667 

25.671 

29.667 

29.667 

29.667 

29.667 

29.667 

29.667 

29.667 

29.667 

29.667 

29.667 

29.671 

29.667 

29.667 

29.668 

33.667 

33.667 

33.667 

33.667 

33.667 

33.667 

33.667 

33.667 

33.667 

33.667 

33.671 

33.667 

33.667 

33.667 

Remark. The values of the first eigenvalues (for different values of L-1 = 1/L = (22U2mR3)/(215a2)) listed 

in the table should not be used in calculations; the data of Table 1 are used for that purpose. They are given only 

to illustrate the trend of the eigenvalues toward values that are independent of L-1 at large values of i (i >_ 5). In 

this case the disappearance of the dependence on L-1 is observed earlier than the coincidence of the eigenvalues 

with those calculated by the accurate equation (see Table 1) at i = 7, and therefore to determine eigenvalues at 

i > 7, relation (19a) may be used. 

5 qR 
a (1) = - ~-~ ~ - a k (1). 

k = l  

Summation in the sums presented above is made over even values of n and j, n = 0, 2, 4 . . . . .  ] = 0, 2, 4 . . . . .  

Thus, the unknown values entering into formula (20) and needed for determining the solution 0en in the 

entry section have all been determined. 

Joining solutions (20) and (13) respectively for the entry section and the section of the channel at a distance 

from the inlet, we obtain the final solution for the temperature field O(x, ~) over the entire length of the channel 

with a laminar flow: 

3 aq 3 qR~2 1 qR~4 
0 ( x ,  ~ )=  4 UmR;t 2 x  + ~ '~2  - 1--6 ~ + 

k = l  i = l  s 

The channel wall temperature tl(x) is determined from Eq. (22) at ~ = 1, i.e., tl = to + O(x, 1), 0 w = 0(x, 

1), and the local number Nux is found from the formula 

00 
axh 2 0--([~=l (23) 

N u  x - - -  

;t 2 0w - ~ ' 
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where 0w is the wall temperature; ~ is the mass-mean temperature in the section considered. 

Omitting intermediate calculations, we write down an expression for the local number Nux: 

22 
Nu x = 1 + 2 

�9 k=l 

22 +2 -fi 

COS--/- x q- n=2 I (n=~2 enkn 

i=1 n=2 S 

0 . 2 4 2 8 6 + ~  ~ ~ enk(n+l)(n+ 
k=l n=2 

x)}x 
kzc 

x 3) c ~  + 

n(n+4) ) 1 n=2 gnk (n + 1) (n + 3) sin- T- x + 
+ 

+ 

22 ~2 ( ~  n ( n + 4 ) ) ( ~  ) }-1 
+ q-R Bi An (n + 1) (n + 3) exp x . 

i=1 n=2 

(24) 

The summation is made over even values of n. Assuming that x--, ~ and 7nk = Ot2/qR)enk, grit = (22/qR)gnk, 

B i = ( & / q R ) B  i we obtain in formula (24) an expression for the local Nusselt number at a distance from the inlet 

of the channel; in this case -dnk, -gnk, and Bi no longer depend on q: 

Nuxai = { 1 + 2 
k=l 

X { 0.24286 + 

n=2 n=2 

~ [ ( ~  - n ( n + 4 )  ) k.u 
k=l n=2 enk (n + 1 ) ( n + 3 )  cos - 7 - x +  

n ( n +  4) . k~ 
-t- gnk (n -t- 1) (n -t- 3) sin--~-x . 

n=2 
(25) 

As is seen from the formula obtained, the local number Nux dis for discrete heat supply has an oscillating character 
as a function of x, i.e., at a distance from the inlet of the channel a quasistabilized heat transfer law holds with 
respect to x. 

The solution of the problem for slug liquid flow is achieved in a similar way. 
Results of Calculations and Their Analysis. Using the formulas obtained for both the laminar and slug flow 

we performed calculations of the local and mean (over the section of heat supply) Nusselt numbers in a wide range 
of parameters (with the width of the source equal to the spacing between the sources). 

The dependence of the local Nusselt number on the longitudinal coordinale for different thermal 
conductivities of the wall for an air flow are presented in Fig. 2 respectively for the thermal entrance region (the 
data are given only for slug flow) and the region at a distance from the inlet of the channel. For comparison the 
figure contains dependences for the case of uniform heat supply over the entire channel length. As seen from the 

results presented, the heat transfer coefficient at the site of the discrete source can exceed substantially the heat 
transfer coefficient at this site for the case of uniform heat supply. This is confirmed by data obtained earlier by 
other investigators [3, 51. 

An analysis of the formulas obtained for the local Nusselt number shows that this criterion depends on the 
dimensionless combinations: Pe = Uh/a, II = (21/22)'(5//) and also on R / l  (h = 2R), or Nux = f(II, Pe, R / l ,  x /R ) .  

it is clear that when the width of a source is not equal to the spacing between the sources, the indicated groups are 
supplemented with the ratio l /L ,  where L is the spacing between the sources along the heat carrier path. The 
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Nux a 

Z8 

I 
2q 

2O 

16 2 3 

i : , k , , . ,  
2 ~ 6 8 10 12 !~ 16 16 Jib 

Nu~ 

15 

12 

O 

z~ 

0 
J L, 

#8 5O 52 

2 3 

5 5O 52 5~ X/h 

Fig. 2. Variat ion of the local Nusselt  number  (Nux = axh/2:) with the  

longitudinal coordinate x/h  in the case of discrete and uniform heat supply 

with Pe = 856; a) entrance section; discrete heat supply, R/I  = 0.25, slug flow: 

1) 17" = 0.283, 21 = 0.3 W / ( m . K ) ;  3) 9.43 and 10; uniform heat supply: 2) 21 

-- 0.3 W / ( m . K ) ;  4) 10; b) at a substantial distance from the inlet of the 

channel; discrete heat supply, R/ I  = 0.25; 1) slug flow II* -- 0.283; 2) laminar, 

17" = 0.283; 3) laminar, 17" = 4.717. 

number II has a clear physical meaning: at the same temperature gradients in the liquid perpendicular to the wall 

near a source and in the wall along it, into the portion adjacent to the source without heat release, it represents 

the ratio of the power removed by convection directly from the surface of the source into the air and that removed 

by conduction to the portion of the wall adjacent to the source (for subsequent t ransfer  likewise to the air in the 

channel). 

In determining the mean Nusselt number Nusec for the section of heat generation as the integral mean one 

over the section of heat supply, we performed calculations of its dependence on the indicated dimensionless 

combinations H and Pe. The  dependence of the mean number Nusec over the section of heat supply for the sections 

at a distance from the inlet of the channel on the number II, which takes into account the thermal conductivity and 

thickness of the channel wall, is presented in Fig. 3. As is seen from this graph, as the number  II increases (which 

corresponds, for example, to an increase in the thermal conductivity of the wall), the number  Nusec at all the values 

of Pe tends to the value 4.1, which corresponds to heat transfer in the case of uniform heat supply over the entire 

length of the channel. From this graph it is also seen that with a decrease in H the heat t ransfer  coefficient increases, 

tending to a certain value determined by the parameter Pe at constant values of R / l  and l /L,  i.e., actually to the 

value of the Nusselt number  obtained from the solution of the corresponding nonconjugate problem (without 

allowance for the axial thermal conductivity of the wall) [8 ]. 
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Fig. 3. Dependence of the integral mean limiting Nusselt  number  Nuse c 

(O%ech/h 2) on the number 17I ((~l/,~2).(cS/l).(R/l)) for a laminar flow; the 

width of a source is equal to the spacing between the sources, R/ l  = 0.25: 1) 

Pe = 856; 2) 86. 
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Fig. 4. Dependence of the integral mean limiting Nusselt  number  Nuse c 

(asech/22) for sections with heat release on the number  Pe (uh/a) for a 

laminar  flow; the width of a source is equal to the spacing between the 

sources, R/ l  = 0.25: 1) 17"= 0.0943; 2) 0.943; 3) 0.00943. 

Thus,  the increase in the heat transfer coefficient at the site of the source in relation to the heat transfer 

coefficient at this site in the case of uniform heat supply over the entire length of the channel depends substantially 

on the thermal conductivity and thickness of the wall, and, for example, for air at 5/l  = 0.1, R/I  = 0.25, and Pe 

= 856 already at/1.1 = 5 W / ( m .  K) the difference between these heat t ransfer  coefficients amounts to no more than 

8 % (for the maximum heat transfer coefficient in the region of the source, no more than 13 %). The dependence 

of the Nusselt number  on the number Pe at a distance from the inlet of the channel is presented in Fig. 4. 

Consequently,  the number Nusec at a distance from the inlet of the channel is not a constant value, as in 

the case of a uniform heat supply (Nu~ -- 4.12), but depends on the number Pe. The same result also follows from 

the solution of the nonconjugate problem of heat transfer, i.e., without allowance for the axial thermal conductivity 

of the wall. 

Another important characteristic of heat transfer under  conditions of discrete heat supply with allowance 

for conductive spreading of heat along the channel wall is the power removed by convection to the air in the channel 

directly from the surface of the source (or the convective heat flux density).  In the considered case of an adiabatic 

outer surface of the channel wall the total power of heat release by the source Psec is represented as a sum of 

powers: that removed by convection directly from the surface of the source Pconv.sec and that conducted away into 
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Fig. 5. Dependence of the ratio of qconv.sec to q on the numbers rI and Peh 
for h/ l  = 0.5 and I /L  = 0.5: 1) Peh = 143; 2) 571; 3) 1142; 4) 4489. 

the portions of the wall adjacent to the source (on the left and the fight) for subsequent transfer likewise to the air 

in the channel already in the spacings between the s o u r c e s  Pcond.sec. ,  i . e . ,  Psec  = Peony.see + Pcond.sec.  For sources 
in the form of transverse bands (a two-dimensional problem) Psec = ql, where q is the density of the heat flux from 

a source, and Peony.see = qconv.sec/, where qconv.sec is the average convective heat flux density over the source length, 

(n~+t) O0 ~=1 
qconv.sec = 22/(R/) O~ dx.  

nL 

Results of a calculation of the ratio qconv.sec/q (or, which is the same, the fraction of the power removed by 

convection directly from the surface of the s o u r c e  Pconv.sec/Psec) as a function of the number II in a wide range of 

the determining parameters are presented in Fig. 5. 

Knowing ase c and qconv.sec, it is not difficult to determine the superheating of the wall temperature in the 

region of the source relative to the air (liquid) temperature under the s o u r c e :  Ose c = ~}sec - Oair = qconv.sec/asec ( N u s e c  

= asech/22). Investigation of the change in the values of Nuse c and qconv.sec as a function of the determining 

parameters for the subsequent determination of ~sec for solving practical problems seems to be more convenient 

than direct determination of superheating from a theoretical solution of the problem. 

Results of calculations of the local numbers Nux also show that for certain ratios between FI and Pe (usually 

at a low thermal conductivity of the wall 21 and a small thickness 6) at the middle of the section without heat supply 

a change in the heat ,flux direction to the opposite is possible, i.e., the heat flux is directed from the liquid to the 

walls, and this corresponds to negative values of the local Nusselt numbers. This can be explained by a rate of heat 

transfer by convection along the flow between sources that exceeds the rate of heat conduction along the wall. 
A calculation of the change in the local Nusselt numbers in the entrance section, for example, for slug flow 

(see Fig. 2), shows that at Pe = 856 the deviation of the maximum Nusselt number in the of heat release section 

from its limiting value at large values of x /h  amounts to no more than 9 % already in the fifth section of heat supply. 

In this case, starting from the second or third section the ratio of the local Nusselt number with discrete heat supply 

to the local Nusselt number obtained from the solution of the corresponding conjugate problem with uniform heat 

supply depends weakly on the location of the source, increasing somewhat with distance from the inlet of the 

channel. 
We should also note that the limiting average Nusselt number for the heat release section increases with 

increase in R/l .  
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The method suggested in the present work seems to be efficient for solving problems in the case of an 

arbitrary periodic change in the heat flux density on the wall. In particular, the case where the width of a source 

is not equal to the spacing between the sources can be analyzed similarly. 

Using the formulas presented or Figs. 3 and 4 one can determine the limiting values of the Nusselt number 

for the sections with heat release when conducting practical calculations of heat transfer in long plane channels 
with discrete sources of heat generation on the walls. 

N O T A T I O N  

tl, t2, temperatures of the wall and liquid, respectively; to, flow temperature at the inlet to the channel; 

U m, U, maximum and mean velocities of liquid in laminar flow; Uo, liquid velocity in slug flow; q, density of heat 

flux from a discrete heat generation source; 21, 22, thermal conductivities of the wall material and liquid; a, thermal 

diffusivity of liquid; 5, channel wall thickness; h = 2R, distance between the walls; l, width of heat generation 

source, equal to the spacing between the sources; L, spacing of the sources along the heat carrier path and the 

coefficient in the tables; H* = H R / l .  
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